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This paper is concerned with the steady, symmetric, two-dimensional flow of a 
viscous, incompressible fluid issuing from an orifice and falling freely under 
gravity. A Reynolds number is defined and considered to be small. Due to the 
apparent intractability of the problem in the neighbourhood of the orifice, 
interest is confined to the flow region below the orifice, where the jet is bounded 
by two free streamlines. It is assumed that the influence of the orifice conditions 
will decay exponentially, and so the asymptotic solutions sought have no 
dependence upon *he nature of the flow at the orifice. In  the region just down- 
stream of the orifice, it is expected that the inertia effects will be of secondary 
importance. Accordingly the Stokes solution is sought and a perturbation scheme 
is developed from it to take account of the inertia effects. It was found possible 
only to express the Stokes solution and its perturbations in the form of co-ordinate 
expansions. This perturbation scheme is found to be singular far downstream 
due to the increasing importance of the inertia effects. Far downstream the jet 
is expected to be very thin and the velocity and stress variations across i t  to be 
small. These assumptions are used as a basis in deriving an asymptotic expansion 
for small Reynolds numbers, which is valid far downstream. This expansion also 
has the appearance of being valid very far downstream, even for Reynolds 
numbers which are not necessarily small. The method of matched asymptotic 
expansions is used to link the asymptotic solutions in the two regions. An 
extension of the method deriving the expansion far downstream, to cover the 
case of an axially-symmetric jet, is given in an appendix. 

1. Introduction 
An incompressible viscous fluid passes through a two-dimensional orifice and 

then falls vertically and symmetrically (see figure 1). The fluid region thereafter 
is bounded by two free streamlines, and the medium outside this region is assumed 
to be at zero pressure and not to interact with the jet. The effects of surface 
tension are ignored. Gravity will accelerate the fluid and so, by continuity, there 
will be a contraction of the jet. This contraction will give rise to viscous stresses 
within the jet which will in turn produce an effect upon the velocity field. Even- 
IJually we expect the jet to be extremely thin and each fluid particle t o  be falling 
as a solid body, i.e. with the inertia effects dominating the viscous effects. 
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We would, of course, have liked to solve the problem in bhe whole of the fluid 
region. It was formulated and considered in some detail, but appeared to be 
intractable, even for Stokes flow, because of the difficulty arising from the 
mixed non-linear boundary conditions (the unknown function z ( t )  describing the 
boundary enters these conditions in a non-linear way). In  this paper we restrict 
our attention to the region of the flow below the orifice. 

In  the region close to the orifice it is expected that the viscous effects will 
dominate the inertia effects. In  similar problems, the strongly diffusive nature 
of such effects invariably indicates that the influence of the conditions at the 
orifice will decay exponentially fast downstream (bhe orifice conditions referred 
to are the fine characteristics such as the variation of the velocity and stresses 
across the flow, raCher than bulk characteristics such as total mass flux). The 
rate of this decay is also usually so fast that such an influence is insignificant at a 
distance, from the orifice, of order of the orifice width. However, in this parti- 
cular problem it appears to be difficult to justify such a decay analytically. This 
is because vorticity is being produced at  the free streamlines and the difficulty 
lies in estimating, a priori, the rate of this production. These statements are 
justified in $3.1. It does, however, remain extremely plausible that such a 
decay does in fact occur and we shall accordingly assume that this is so. This 
means that we shall seek solutions, away from the orifice, which are independent 
of the orifice conditions. 

By considering the flow only in a region away from the orifice, we have elimin- 
ated the natural length scale of $he orifice width. If follows that the only para- 
meters appearing in the problem are Q ,  g and v ,  where 2Q is the volume flux 
across (unit depth of) any section of the jet, g is the acceleration due to gravity 
and v is the kinematic viscosity. Therefore the only dimensionless parameter 
is Q / v ,  this we define to be the Reynolds number and denote it by R. In  whab 
follows we consider R to be small. 

In  order to emphasize the subdominance of the inertia terms in the region 
jusb below the orifice, we take as basic length and velocity scales, in this region, 
(vQg-l)* and (gQ2v-l)3. If we express the field equations in terms of variables 
made dimensionless with respect to these scales, and employ a perturbation 
scheme based upon the smallness of R (the basic solution being obtained by 
solving the problem for R = 0 ) ,  then the solution will be incorrect far down- 
stream. A solubion which will be correct far downstream must take the inertia 
terms into account from bhe outset, as in this region these terms are comparable 
and eventually dominate the viscous terms. The simplifying features of this region 
are that the jet will be thin and the velocity and stress gradients across it will be 
finite. These features are brought to the fore by the use of (v2g-l)) and (vg)f as 
length and velocity scales in this region. An expansion is derived, on these 
assumptions, and is then matched wibh the ‘inner’ expansion. The term ‘outer’ 
expansion refers to the expansion which is valid far downstream, and its region 
of validity is termed the ‘outer’ region. Similarly the inner expansion is valid in 
the inner region, which is upstream of the outer region. 

The two main difficulties encountered in the determination of viscous flows 
with free streamlines are that these streamlines are not known in advance and 
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must be found as part of the solution, and that the boundary conditions to be 
imposed upon these unknown boundaries are stress conditions, which themselves 
depend upon the unknown orientation of Che streamlines. In  the inner expansion 
the former difficulty is overcome by successive approximations of the boundary 
curve, whilst the latter difficulty is overcome by the introduction of a stress 
function 0, and this in turn suggests that the Navier-Stokes equations should 
be rewritten in a complex form. This form is developed in appendix A. It was 
first presented by Legendre (1949), without any derivation, and was used by 
him Co discuss the flow over a flat plate. Moisil(1955), and following him Langlois 
(1964), derive the reformulated field equations (and boundary conditions appli- 
cable to free slxeamlines) for the case of Stokes flow, though the motivation and 
procedure appear to be quite different from the one presented in appendix A. 
In  a recent paper Garabedian (1966) uses the compIex variable form of the 
equations for Stokes flows with free streamlines in a variety of idealized situa- 
tions. Unfortunately tihe complexity of the present problem has permitted us to 
derive only a co-ordinate expansion (i.e. for large values of the streamwise 
co-ordinate) of the inner problem. This is, however, sufficient to provide the 
missing boundary conditions for the outer expansion. 

In  the outer expansion both difficulties are overcome by expressing the field 
equations and boundary conditions in flowline co-ordinates, that is, a system of 
co-ordinates in which one of the independent variables is the stream function 
and the other variable is so constructed as 00 form an orthogonal net. 

Strictly speaking, the two expansions should be developed side by side and 
matched at  each stage before proceeding to the subsequent stage. However, in 
view of the fact that the two expansions are derived by such different methods, 
several terms of the inner expansion are derived here before the outer expansion 
is considered. Where a step in one expansion is dependent upon the previous 
stage in the other expansion, this will be noted and explained in the text. 

Brown (1961) gave details of some experimental work on viscous sheets, and in 
an appendix to that paper, Taylor gives a derivation of the equation of motion 
of a one-dimensional viscous jet falling under gravity. This equation is the same 
as the one we derive for the leading term of our outer expansion, though the 
methods of derivation are dissimilar. 

In  appendix B, we derive an outer expansion for the case of an axially sym- 
metric jet. This is included because we may use essentially the same technique 
as is used for the two-dimensional case, and also because the ordinary differen- 
tial equations involved in the solution may be reduced to those occurring in the 
two-dimensional flow. 

2. The inner expansion 
2.1. Formulation 

We take as the origin of a rectangular Cartesian co-ordinate system a point on the 
line of symmetry at an arbitrary distance below the orifice. The X-axis is taken 
to lie in the direction in which gravity acts (i.e. along the line of symmetry), 
and the Y-axis as in figure 1. The components of the velocity in the X and Y 
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directions are denoted by U and V .  Dimensionless variables are introduced as 

where CJ and Y are the dimensional Airy stress function and stream function, 
introduced in appendix A, P is the pressure defined so that P vanishes outside 

FIGURE 1. The flow region. 

the jet, and p is the density assumed constant throughout. We define, as the 
only dimensionless parameter appearing in the problem, a Reynolds number 
R = &I u and consider this to be small. The reader is now referred to  appendix A, 
where the governing equations and the boundary conditions are expressed in 
complex variable form. These reformulations are, in terms of the dimensionless 
variables, 

( 2 . 2 )  
a2 
-($+i+) = -+R 
ax2 

together with the boundary conditions 

and 

%! = ‘/x(l- iS’(x; R)) dx 
az 4 

which are to be applied on the unknown free streamlines denoted by y = & S(x;  R). 
Here S’(x; R) denotes the derivative of S with respect to x. Equation (3.2) is the 
amalgamation of the Navier-Stokes equations and the equation of continuity, 
equation (2 .3 )  is the condition stating that the normal and shear stresses must 
vanish on the free streamlines and (2.4) asserts that there is to be no normal 
velocity on y = & X(x; R). 
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2.2. T h e  xero-order approximation 

The dependent variables q5 and 9 are functions of x ,  2 and R. The assumption is 
now made that they may be expanded in a series in functions of R, and that the 
first term in each such series will be independent of R. 

The zero-order field equations may be obtained formally by putting R = 0 
in (2.3), to obtain 

a 2  
- ($h0 + i7jko) = 0. 
a22 

(2.5) 

This is, of course, the Stokes approximation and the solution of (2.5) will be the 
Stokes flow. The general solution of (2.5) is 

_ _ _ _  
$0 + i7jko = z f o  (4 +go (4, (2.6) 

where f o  ( 2 )  and go (2 )  are analytic functions of x .  We now wish to express the 
boundary conditions in terms offo and go. We differentiate (2.6) with respect to 
x and with respect to X and take the complex conjugate of the latter resulting 
equation, to derive 

-- a$% i ?t!? = Xf; ( 2 )  + g;, (2 ) .  
a2 a2 

The sum and difference of these two equations gives 

We substitute (2.7) and (2.8) into the boundary condikions (2.3) and (2.4), to 
derive the following equations which are to be satisfied on y = ~f: X, ( x ) ,  

(2.10) 

It can be seen that (2.9) and (2.10) represent a boundary-value problem in analy- 
tic function theory. Such problems are familiar in the theory of plane elasticity. 
In  our case there is the added difficulty that X, ( x )  is also unknown and must be 
foundfrom (2.9) and (2.10), and as such (2.10) is clearly of anon-linear character. 
At present it has only been possible to derive an asymptotic solution (for large x )  
to this problem. 

If a solution to (2.9) and (2.10) exists, then it is clear that for large values of x 
it  must have the asymptotic form 

f0(z) = o ( z ~ ) ,  go(z )  = o ( z ~ ) ,  s,(x) = o(x-2). 
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The last of these, though not at  first obvious, may be obtained by putting 
X,(x) = O(x-n) in (2.10). Hence we put 

fa@) = a,z2+o(z2), 

g o @ )  = boz3+0(z3),  

8,(x) = c02-2+o(x-2), 

and insert these into (2.9) and (2.10) to find a, = and b, = -&. c, remains 
undetermined as (2.10) and the imaginary part of (2.9), from which we would 
expect to find c,, are both homogeneous in c,. However, we require that the 
volume flux across any section should equal 2. Therefore 

(2.11) 

to the first order in R. From (2.8) we see that 
_ _ _ _  

uo + ivo = fo (4 - zf6 (4 - g; (21, (2.12) 

and so from (2.11) and (2.12) we find that c, = 8. 

order x-6 times the retained terms, and so for a second approximation we put 
The error involved in the omission of terms smaller than those considered is of 

fo (2) = & 9 +a,, z - ~  + o ( x - ~ ) ,  

go (2) == - Z3 + b,, .r3 + 0 ( r 3 ) ,  

so (x) = 8x-2 + colx-* + o(x-8). 

Again we insert these expressions into (2.9) and (2.10) to find that a,, = -sE,  

b,, = %and col = w. The error involved is again of order x - ~  times the smallest 
retained Cerm. Further terms may be calculated in the same way. 

If it is attempted to introduce into the solution intermediate terms, say 
az info(z), and a corresponding chain of terms in g,(z) and X, (x) and the induced 
lower order terms info(x), then this succeeds and a remains arbitrary, other than 
that ib should be real. However, when any physical quantities, such as the velo- 
city, are derived from Chese solutions, they appear in a form whose natural 
variable is ( x +  4a). This shows i5hese parts of the solubion arise merely because 
of the arbitrariness of our origin. A suitable redefinition of the origin will simply 
remove the terms dependent upon a:. This we will do by formally setting a: = 0. 
There is no loss of generality in this procedure as we are replacing one arbitrary 
origin by another. It should be noted that the absence of any arbitrariness in our 
solution, other than of the 6ype mentioned above, is in complete agreement with 
the assumption that the influence of the orifice conditions decays exponentially 
fast. This is because any such decaying terms would automaticalIy be excluded 
from our asymptotic solution. 

The solution to the zero-order problem, written as an expansion for large x, is 

to@) = ~ E ~ 2 - ~ ~ ~ - 4 + O ( z - 1 0 ) ,  

S o p )  = - & ~ 3 + + ~ $ ~ - 3 + 0 ( ~ - 9 ) ,  

so (x) = 8x-2 + ypz-8 + O(x-14). 

(2.13) 
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When we match the inner and outer expansions we require a form of uo (for large 
x) on the line of symmetry (the matching of all other expressions is automatically 
accomplished when we match u on y = 0). From (2.12) and (2.13) we find that 

(2.14) 
this form is 

Zc,(x,O) = & 2 2 + y z - 4 + 0 ( 2 - 1 0 ) .  

2.3. The Jirst-order approximation 

At this stage we could calculate the dominant term of the outer expansion, 
matching it to (2.14) in order to determine an arbitrary constant in the outer 
expansion. It would then appear that, if the two expansions are to match to 
higher orders, the inner expansions for the pressure and the velocity vector u 
must take the form 

(2.15) 

Consequently $, $ and X will also be represented in series in powers of Rt. It is 
onIy the matching that can force the existence of $1, and 8, and, as we shall 
see, these terms vanish identically. We shall therefore omit them at this stage. 
With u1 and p1 absent, it is only the matching that forces the existence of u2 
and p2. These terms are present as we shall justify in $4. 

1 p = p0+R*pl+R3p2+Rp3+ ..., 
u = U ~ + R ~ . I , + R ~ U , + R U , +  .... 

2.4. The second-order approximation 

The field equations for q5z and $-2 are still homogeneous, 

- _ _  
and hence $2 + ill'2 = $2 ( 2 )  + Q2 ( z ) .  

The boundary will experience a shift of order R8, and so in the non-linear 
boundary conditions we must also include the zero-order terms as they will also 
contribute terms of order R%, through the boundary shift. The total boundary 
conditions, to this order in R, are 

(2.16) 
(fo + .E+ Z) + R3(f2 + zf;, + Z) = 4 x 2  + - X(SA + R%&) ax, 

Im ( [ I  - i(XA + R+S;)~ [(f, - zfA - gA) + R3(f2 - ~ f i  - gi)I) = 0, 

y = * (So (2) + RQS, (4). 

2 
_ _  i f  _ -  

on 

We use hints from the matching and look for solutions of the form 

f2(z) = aZz4+0(z4), 

gz(x )  = b2z5+0(z5) ,  

X,(x) = C , + O ( l ) .  

We substitute these expressions into (2.16) to find that 

b 2 -  - -a  2 and c2 = - 128a2, 
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where a2 is real but otherwise arbitrary. The terms, smaller in z ,  may be 
found in the same way as in the zero-order approximation. For matching 
purposes, the second-order contribution to u on the line of symmetry is 

~ 8 ( 2 ~ , ~ 4  + O(Z-2)). 

2.5. The third-order approximation 

Here the inertia terms make their first appearance. From appendix A, the field 
equations are 

We have retained only the leading terms of (uo-ivo) as only these will contri- 
bute to the leading terms of q53+i$3. The general solution of (2.17) is 

-. - 
$3 + i$3 = zf3 (2) + g3 ( z )  + 2 - ” ( % ~ ~  - 3x52 + ?ilx4S2 - 6z3X3 + $z2X4) + O(hg 2). 

We could proceed in the same way as for the second-order approximation, bub 
in view of the increasing complexity only the results will be stated. The solutions 
will clearly be forced by the inertia terms, which indicates the order of the 
leading terms. The solution is given by 

f 3  ( z )  = - 2-1iz5 + o(Z-l), 
g3(z) = --22-1126+0(1), 

8, (x) z= - Q + O(x-6)). 

The leading contribution to u on the line of symmetry is R 3 - 9 ~ 5 .  
We could, in principle, pursue our calculations further, but in view of the 

similarity of method and the absence of any salient results we shall not do so 
here. It will be noticed that at  each approximation there is a singularity a t  
z = 00 and that the singularity becomes worse as we raise the order of approxi- 
mation. The solution as given by the inner expansion will therefore be incorrect 
far downstream as the perturbation is singular at  downstream infinity. 

3. The outer expansion 
3.1. Pormulution 

Far downstream we expect the jet to become very thin and the variations in the 
velocity and stress across it to become small. In  order to utilize this we define 
dimensionless variables as follows, 

(3.1) i (9, Y )  = (v2g-l)q$?)fj), ( V ,  V )  = (vg)qa,a), 

P = p(vg)q3, Y = V W . ,  

where the quantities denoted by capital letters are as in the inner problem. 
Y, the dimensional stream function, is made dimensionless as in (3.1) so that the 
free streamlines are denoted by @ = k 1, as they were in the inner problem. 
R = &I v is the Reynolds number as defined in the inner problem. The relationship 
between the inner and outer variables is given by 

(z,Y) = R-f(O,@), (u,v) = R-$(.Ei,@), p = R-49. 
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The way in which we make Y dimensionless does not, of course, make 9 of order 
unity in the region considered (unlike 2), but this is immaterial as we shall be 
treating Q as a dependent variable in what follows. We shall now omit the 
symbol (") for convenience, and restore it when we match the two expansions 
formally. 

As before, the free streamlines are unknown in terms of x and y ,  but are given 
by $ = & 1. This suggests using $ as an independent variable. We therefore 
consider the problem to be in the [-plane, where [ = (c, R$). Here g is defined 
by ,$ = x on the line of symmetry, and the lines 5 = constant are everywhere 
orthogonal to the lines R$ = constant. This means that c and R$ form an 
orthogonal curvilinear co-ordinate system. 

If we put q2 = u2 + v2, then the velocity components with respect to (E, R$) 
are (q, 0 ) ,  whereas those with respect to (x, y )  were (u, v) = (q  cos 8, - q sin 8).  
This defines bhe angle 8. The two planes are linked by the following transforma- 
tion, 

(3.3) 

y = RSSTq-'cos8d$. (3.3) 

The arc-length parameter associated with R$ is q-l, and that with g we denote 
by h. The formal definition of h is h2 = ( a ~ / a ( ) ~  + (ay/a@, and so h could be 
derived in terms of q and 8 from (3.2) and (3.3). This is, however, an arduous 
task and not very illuminating and so we adopt an alternative approach. Consider 
the constant vector grad x, which in this problem is representative of gravity. 
In the f;-plane 

on using equation (3.3). As the magnitude of grad x is unity, we have that 
(l/h)/(ax/ac) = + cos8, the positive sign being implied by (3.2). Therefore 

gradx = (cosO,sin8). 

We know that curl (gradx) and div(gradx) both vanish identically and so ex- 
pressing this fact in the [-plane, we have 

a a 
- (4-1 cos 8 )  + R-l - (h  sin 0) = 0 ,  
a t  a$ 
a a 
- (q-lsin 8)  - R-l- (h  cos 0) = 0. 

a$ 

(3.4) 

(3.5) 

Prom these equations we may deduce, quite simply, that 

h = R4&128,), (3.6) 

h, = R8f/q7 (3.7) 

where the subscripts denote differentiation with respect to the variable indicated. 
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Having established the geometry of the <-plane, we may express the Navier- 
Stokes equations with respect to these co-ordinates, 

The equation of continuity is automatically satisfied by the use we have made of 
the stream function as an independent variable. We have the four field equations 
(3.6)-(3.9) for the four unknowns q, h ,p  and 8. 

The boundary conditions are particularly simple in the <-plane. The normal 
velocity condition is automatically satisfied by the use we have made of $-, and 
from the stress tensor we calculate that the zero shear and normal stress condi- 
tions, to be applied on $ = k 1, are 

(3.10) 

(3.11) 

Because we shall not be considering the region in which q could vanish on the free 
streamlines, and as h is non-zero, (3.10) may be written as 

(3.13) 

We can now see that by expressing the problem in the c-plane we have over- 
come the difficulties of the unknown boundary and the stress conditions to be 
applied there. By way of compensation, the field equations are now more com- 
plicated. It is this complication which makes this formulation unsuitable for the 
problem in the inner region. 

We shall digress at  this point to comment upon the remarks made in $ 1  
concerning the analytic justification of an exponentially fast decay in the in- 
fluence of the orifice conditions. First, we note that (3.8) may be written in the 
form 

(3.13) 

where w = - R-l(q/h)/(a/a$-) (qh) is the vorticity and H = +q2 + p  + a, is the 
total head, Q* being the potential of the force due to gravity. From this form of 
the equation we can see that vorticity will be transported across a streamline 
whenever the total head is changing along it. I n  particular, along a free stream- 
line the total head will, in general, change (unlike the case of an inviscid fluid), 
and so vorticity will in general be produced on a free streamline. We are ignorant 
of the shape of the free streamlines and so we are unable to derive an a priori 
estimate for the rate of production of this vorticity and its dependence upon the 
orifice conditions. It is the possibility of introducing, from free streamlines, some 
non-exponentially decaying influence of the orifice conditions which prevents the 
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usual estimation analysis from being effected. An alternative analysis has so far 
eluded the author. We are therefore forced to assume the plausible type of decay 
rate. 

Returning to the problem in the outer region, it can be seen from symmetry 
considerations that q, h and p will be even functions of $, and 0 will be an odd 
function of $. In  the field equations, (3.6)-(3.9), R always appears in conjunction 
with $ and so we suppose that the solutions may be expressed in the forms 

h = 1 + R2$2h2 + R41Cr4h4 + . . . , 
p = po+R2$2p2+R4$4p4+ ..., 
0 = R$0, + R3$W3 + . . . . 

(3.14) 

Although R and $ appear together in the field equations, R does not appear 
explicitly with $ in the designation of the boundary. We therefore assert that the 
coefficients of (a$) in (3.14) will be functions of both 5 and R. When we match 
the inner and outer expansions, it becomes apparent that the coefficients must 
have the form, to take a typical example, 

40 (5; R)  = qoo (0 + R2qoz (5) + R4q,4 (5) + . * * * (3.15) 

3.2. The derivation and solutions of the equationsfor qoo, etc. 

We insert the forms (3.14) and (3.15) et al. into the equations (3.6) and (3.7) 
and also into the boundary conditions (3.11) and (3.12), to obtain relationships 
between the various coefficients appearing in (3.14) and (3.15). From the ex- 
pressions arising from (3.6) and (3.7) we compare terms independent of R to 
obtain, on some rearrangement, 

(3.16) 
(3.17) 

Here (') denotes differentiation wi6h respect to (. Similarly the leading terms in 
(3.11) and (3.12) give 

Po0 = -2do (3.18) 

and q z o  = qiOOh20, (3.19) 

respectively. We now substitute (3.14) and (3.15) into (3.8) and equate the terms 
independenb of R to zero. In  the resulting equation we use (3.16)-(3.19) to derive 
a second-order non-linear ordinary differential equation for qoo, 

4d0 - 4qh:lqOo - qoo d o  + 1 = 0. (3.20) 

As may be readily verified by reverting to dimensional variables, the last term 
in this equation is a gravity term, the next last is the inertia term and the first 
two are essentially viscous terms (the firs6 term in fact arises equally from the 
viscous stresses and the pressure forces, though these forces rely largely upon 
the viscous effects for their imporbance in this region). It should be noted from 
this that viscosity remains a relevant factor in the outer region. 
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We may derive the equations for qo2 by taking account of terms of order R2 
and B21Cr2 in the field equations and of terms of order R2 in the boundary condi- 
tions. This is a process of considerable manipulative complexity and so only the 
resulting equation will be quoted, 

4 d 2  - (qo0 + 8qA0/~00)~h2 + (4qA%1i~ - 4Aoko2 = nif(t), (3.21) 

where M may be expressed in the form 

In principle the higher-order terms qOn could be calculated in a similar manner, 
though the labour involved would be prohibitive. It is clear, however, that the 
qOn will satisfy an equakion with the same homogeneous part as that in (3.21), 
all the qon being perturbations developed from qoo. 

It is apparent from (3.16)-(3.19) and their higher-order counterparts that the 
qon completely determine all the other coefficients in (3.14) and (3.15) et al., 
and so by solving (3.20) and (3.21), etc., we shall, in principle, have solved the 
outer problem to any desired order in R. 

First, we make a slight transformation of the variables in order to simplify 
the arithmetic. We put $ = 2 b  and qon = 2*Fn. In  terms of these variables, 
equation (3.30) becomes 

F: - FA2/Fo - Fo FA + 1 = 0, (3.22) 

where ( ’) now denotes differentiation with respect to c. This is the form in which 
Taylor (see Brown (1961)) expressed his equation. Similarly equation (3.21) 
becomes Fl - (Fo + 2FJFo)Fi + (FAz/F; - FA)F2 = M ( a ) ,  (3.23) 

M ( a )  being derived from M(<) quite simply. 
The solution of (3.33) will be considered first. From the matching, the condi- 

tion that Fo(0) = 0 must be imposed (see $4).  Also, as Fo is proportional to the 
leading term for the velocity on $he line of symmetry, we must impose the 
further condition that Fo cannot have a singularity at  finite c. Under these condi- 
tions, the solution of (3.22) is given by 

Fo(a) = 2-){Ai (r)I2/[{Ai’ (r)}Z-r{Ai (r)}2], (3.24) 

where Ai is the Airy function, r is given by r = 2-4(c + k), k, = 2-fk is any zero 
of the Airy function, and the dash associated with the Airy function denotes 
differentiation with respect to r .  For a derivation, of this solution the reader is 
referred to Clarke (1966). The solution, as given by (3.24), isdisplayedgraphically 
in figure 2. For this particular problem the oscillatory behaviour is unrealistic, 
and so, to exclude it from the region of interest, we choose k, to be the zero with 
the smallest magnitude. This corresponds to choosing k = k, = - 2.94583.. . . 

For small values of a, Fo has the form 

Fo(a) N &T~++&,v~+&T~+ .... (3.25) 

It is from the second term of this expression that, on matching, we can assert 
the form the inner expansion must take. That is, it is the term in g4 of goo which 
forces the existence of the term R*u2 of the inner expansion. 
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For large values of B, we find that 

Boo J(%) + O(6-47 (3.26) 

that is, on returning to dimensional variables, U N (2gX)*, showing that the 
fluid particles do indeed fall ultimately as a solid body. 

(k3) (4 @I) (ko)  r 

FIGURE 2.  Qualitative description of El,,(r) showing oscillatory behaviour. 

We turn now to equation (3.23). Because of the complexity of the inhomo- 
geneous part of the equation, the problem of obtaining a solution in closed form 
was found to be intractable. The associated homogeneous equation can readily 
be shown to admit the linearly independent solutions 

wl = .FA ( B )  and w2 = Ai’ Ft/Ai3, 

and so a Green’s function G(B, 7) may be constructed from w1 and 2r2 in the usua 
manner. The general solution of (3.23) may then be written as 

(3.27) 

w 2 ( r )  is exponentially large for B - + ~ o ,  and so we may put a2 = 0. Prom this 
formal solution, the asymptotic forms for B+ 0 and B+ 00 may be obtained, 

F~ (a) = % ~ - 4  + 0p-1) + a, (a + 0(a3)), (3.28) 

for small B, and for large B we have 

F2 ( B )  = - +&(a + ko)-l + O(B + ko)-f + a1 (2(B + k0))-& + O(cr + ko)-2. (3.39) 

We should note here that the outer expansion has been developed under the 
assumption that the Reynolds number was small, and under such an assumption 
we may, in principle, obtain an explicit asymptotic representation by appealing 
t o  the matching principle. Having obtained this representation, suppose we now 
allow the Reynolds number to increase until it can no longer be considered small. 
An examination of the asymptotic forms for Fo and F2 (i.e. equations (3.26) and 
(3.29)) reveals that our representation for q o ( [ ;  R)  still retains the appearance 
of an asymptotic expansion, though now for (+a rather than R-tO. This 
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means that our solution appears to be still valid, even for Reynolds numbers 
which are not small, although the region of validity will be even more restricted 
than for the case of small Reynolds number. 

4. The matching procedure 
We are relying on bhe matching to provide conditions for the equations for 

q,, of the outer expansion, and also to show bhe necessity of the existence of 
terms such as u, in the inner expansion. We have seen from the outer expansion 
that a knowledge of the velocity on the line of symmetry uniquely determines the 
flow field in the outer region. Hence we need only match the two expansions on 
that line. 

We consider the limiting process R+O for x = M(R)x,, with x, fixed and 
1 < M ( R )  < R a .  xM is called an intermediate variable as x = M(R)x,,+m 
with x,, fixed and R+O, and IT = 2-+R*M(R)x,,+O with xJf fixed and R+O. 
We now express the inner and outer expansions in terms of the intermediate 
variable, the former for x + co and the latter for IT+ 0, and then compare the two 
resulting expansions. From $2, we have that the inner expansion, for X+CO, is 

u(x,  0) = {&M2(R)x& + -yM-4(R)x,?4 + O(M-10)) 

+ R % { z ~ , M ~ ( R ) ~ & +  O ( M - ~ ) )  
+ R(2-9M5(R)x& + O(M-1)) 

+ O ( R W 6 ) .  (4.1) 

As yet we do not know &he form for u as given by the outer expansion because 
we do not know the boundary condition to be applied at  CT = 0. However, we 
now assert that it  must have the same leading term as that provided by the inner 
expansion. In  terms of the intermediate variable, the outer expansion has a 
leading term u = &M2(R)x&. Rephrasing this in the outer variables, we have 
that 

P,(IT) N &a2 as IT+O, 

and hence we have the boundary condition for Po (as anticipated in $3.3), 
B’,(O) = 0. On using this condition to solve the equation for P,(a) we find that 
for small IT (equation (3.25)) 

F,(IT) = *a2+&koa4+&5+ .... (4.2) 

From the terms in (4.1) that were neglected we find that, for matching to  one 
term, the overlap domain is defined by 

1 < M(R) < R-4, 5 = M(R)x,, (0 < xiM < CO). 

We may now express the outer expansion in terms of the intermediate variable, 

u(x,  0) = {&M2(R)x& + + Z - - % , R + M ~ ( ~ ) ~ &  + 2-9R~5(R)x& + . . .) 
+( ~-M-4(R)x~4+0(RH-1)+a10(B~M))+ .... (4.3) 

The terms on the second line arise from P,(IT). On comparing (4.3) with (4.1) it  
is seen as expected that the leading terms in each expansion are identical. The 
next largest terms will be those of order M-4(R) in 1 < M ( R )  < R* and those 
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of order R+M4(R) in R* < M(R)  < R 4 .  However, no attempt is made 60 dis- 
tinguish between the relative magnitudes of these two terms, but the assertion 
is made that both terms are greater than all other terms, other than those al- 
ready matched. As the forms in x, of these two terms are so different, no diffi- 
culty is encountered in matching them to the two corresponding terms in the 
other expansion. On matching these terms we find that those of order 3 P 4 ( R )  
match automatically, and from those of order R%N4(R) we h d  a2 = &2-%k0, 
and that the overlap domain for matching to this order is defined by 

R+i < M(R)  < R 4 ,  

It. is from the matching at this order that we are able to justify the forms (3.15), 
and also the comments and forms posed in $3.3. 

x = N ( R ) x ~ ~ ,  0 < X, < CO. 

U 

FIGURE 3. Comparison between Po(@,  its asymptote [2( (r+k0)]*  and Go(@. 

, P,(a); ----, [2(a+k0)]4; - 9 Go(@- 

We could in principle continue this process but we shall not do so here. It 
should be noted that to determine the constant ccl in the expression for F2 we 
would require a knowledge of the second term in the expansion for the fifth 
approximation of the inner expansion. 

In  figure 3 we show Fo (a) and compare it with 2*(c + ko)* t o  which it asymptotes. 
Also in figure 3 we show Go (a), which is essentially gz0, normalized for comparison 
purposes by gz0 = 2*G0(a) and then expressed in terms of known functions as 
follows. From equations (3.17) and (3.19) we have that 

A f 2  A3 
820  = 4a';o/a:o - YOO/400, 

and so Go(a)  = &(Fl/Fg- 2FA2/Fi). 
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From figure 3, we can see that Go, which represents the leading term associated 
with the variation of the velocity across the jet, has become insignificant, as 
compared with F,,, for values of cr greater than cr = 3. This shows that, even for 
substantial values of R, the velocity distribution across the jet will rapidly tend 
to become uniform. It should be noted, however, that our solution shows the 
decay to a uniform distribution to be algebraic. This must be due to the alge- 
braically decaying production of vorticity at the free streamlines, which is in 
turn due, in this case, to the effects of gravity in accelerating the fluid within the 
jet. 

The fact that Go, and other higher-order terms in the outer expansion, are 
singular at  the origin (cr = 0)  is not unexpected, it merely reflects that the outer 
expansion, as well as the inner expansion, is derived from a singular perturbation. 

In  the preparation of figure 3, considerable use was made of tables of Airy 
functions by Miller (1946). 

Part of this work was done while the author was at  the Department of Applied 
Mathematics and Theoretical Physics in the University of Cambridge. I am 
grateful to Mr L. E. Fraenkel for his patient guidance during the course of this 
investigation, as I am to the Science Research Council for a grant during the 
period of study. 

Appendix A. Complex variable formalism of the Navier-Stokes equa- 
tions in two dimensions 

Consider the Navier-Stokes equations written in dyadic notation 

pu.gradu+pgradQ = divT, (A 1) 

where Q is the body force potential, p the constant uniform density and T is the 
stress tensor. We use the equation of continuity 

divu = 0, 

div(puu+pQl-T) = 0 ,  
to put (A 1) in the form 

where I is the identity tensor. Each term within the bracket in equation (A 3) 
is a symmetric second-order tensor, and so (puu +pal -T) is also a symmetric 
second-order tensor, which by (A 3) is divergence free. Equation (A 3) is then 
the necessary and sufficient condition for the existence of a function @(x,y) 
such that 

(see Muskhelishvili 1963, p. 104). 
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CD is an Airy stress function. It can be seen from (A 4) and (A 6) that 

V2Q, = -2p(4q2-J-p/p+C;Z) = -2pH, 

where H is the total head. If we introduce the well-known expressions for the 
components of the stress tensor in terms of the pressure and velocity gradients, 
and use the stream function Y, defined by 

- -v, a y  aY 
- = u  and -- aY ax 

equation (A 5) and the difference of (A 4) and (A 6) may be written in the forms 

(A 7) 

Y +p(u2-v2). (A 8 )  
(&&) (3 = -4p- a2  

axay 

a2  

axay ---CD==p (:2 l 2 )  Y+puv ,  

We now change to  new independent variables z( = x +iy) and X (=  x - i y ) ,  
equations (A 7 )  and (A 8) becoming 

The sum of these equations is 

The boundary conditions must also be expressed in terms of CD and Y. On a 
solid boundary, the velocities will be prescribed, i.e. a Y / a z  will be some given 
function on the boundary contour. On a free streamline the conditions to be 
applied are that the shear stress, the normal stress and the normal velocity are 
all to vanish in the case being considered in this paper. The stress conditions may 
be expressed as T. n = 0 on the free streamline, where n is the unit vector normal 
to the streamline. By use of (A 4)-(A 6), these stress conditions may be put into 
differential forms 

as n has components proportional to (dy, -ax) where (dx, dy) are the components 
of a small displacement along the free streamline. We group like terms together 
and use the identity dY = Udy-vdx, 

to find 

d (E) - +pQdx-pvdY=OJ 

32 Fluid Mech. 31 
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on a free streamline. As d Y  = 0 along any streamline, equations (A 10) may be 
combined to form one complex condition 

on a free streamline. 

sidering Y as a function of z and X this becomes 
The condition that the normal velocity should vanish is that d Y  = 0. Con- 

We therefore have that on a free streamline 

Re -dz = 0. {Z 1 
Appendix B. Extension to the case of the axially-symmetric jet 

The volume flux crossing any section of the jet is defined to be 2nQ. Here Q has 
different dimensions to the corresponding flux in the two-dimensional case, and 
so the inner variables will be made dimensionless in a different manner. The 
dimensionless inner variables are defined by 

(r*,  z+) = (Qv-')i((r, z ) ,  (u*, w*) = (Qsv-l)*(u, w), P, = pg(Q@)*p, 

where (r*, z+) are the dimensional cylindrical co-ordinates (the angular com- 
ponent being omitted in view of symmetry), r* being the radial measure and z* 
measuring along the axis of symmetry. 

From the equation of continuity, there exists a dimensional stream function 
Y given by r* wb = aY/ar,, - r* u* = aY/az,. Y is rendered dimensionless by 
Y = &$. This means that the line of symmetry is denoted by $ = 0 and the free 
surface by $ = 1. The only dimensionless parameter appearing is again a 
Reynolds number, now defined by R = g*Qv-8. 

The complex variable method is now unavailable, and no attempt will be 
made here to solve the problem in the inner region. However, it can be seen that 
the solution to the Stokes equation will again have an asymptotic form, for 
large z ,  w - O(z2). This is sufficient to provide the boundary condition for the 
first approximation in the outer region. 

The outer variables are defined by (r*,z*) = (v2g-')*((e,2), (u*,w*) = (vg)* 
(a, a), P, = p(vg)%@ and Y = Rv%g-*@. The free surface is again denoted by 
$ = 1. The relationship between the inner and outer variables is (r ,z)  = R-4 
(P,%), (u, w) = Ra(a,&) and p = R-&@. The circumflex will now be omitted for 
convenience, as only outer variables will be used from now on. As in the 
two-dimensional case, the problem is transformed onto the c-space, where 
< = (6, R$, y), y being the angular co-ordinate. We again define 6 by 6 = z on 
the line of symmetry and the surfaces = constant are everywhere orthogonal 
to the surfaces R$ = constant. 
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An angle O is defined by (u, w) = ( - q sin 0, q cos O), with q2 = v2 + w2. Consider 
an annular element lying in the surface 6 = constant. The volume flux through 
this element is given by 2nQd$; it is also given by 3n $9-bqds, where ds is the 
width of the element. Therefore ds = Rd$/(rq) and hence the two sets of co- 
ordinates are linked by 

(B 1) 

The factor r--1 may be removed from within the integral in (B  2 )  to clarify the 
form of r. We differentiate (B 2 )  with respect to $ and multiply both sides of the 
equation by r to obtain 

r - = Rq-l cos 8. 
ar 

a$- 
We integrate this equation with respect to $ from 0 to $ to obtain 

The arc-length parameters associated with (6, R$, 7) are (h, q-l r-l, r ) ,  h 
again being unknown. The conditions for the irrotationality and divergence-free 
nature of a constant vector provide the equations 

The Navier-Stokes equations become in the new co-ordinate system 

q2 ah 8p RsinO 1 a 
ha$- a$- qr hqr2ag 

---+ 

and the boundary conditions to be applied on qb = 1 are 

Equations (B 3), (B 4) and (B 5) suggest that the dependent variables may be 
expanded in the forms 

q = qo+R$q,+..., 
p = PO+R$Pl+ ..., 

0 = (R$-)&(OO+R$Ol+ .-.), 
r = (B$)~((+q,)-&+R$r,+...). 

h = l+R$hl+ ..., 
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Again the coefficients of R@ will in general be functions of botih c and R, with the 
leading term independent of R, i.e. 

40 (c, R) = 400 (8 + m o ,  (5) + . . ., (v ’ 0). 

We proceed as for the two-dimensional case to find that the equation for qoo is 

3 d 0  - 3 d % 1 0 0  - QOO& + 1 = 0. 

We put = 3 b  and qoo = 3 3 F 0 ( ( r )  and the equation (B 11) reduces to 

which is the same equation as the one for the leading term in the two-dimen- 
sional case, and hence the solution is known. If we expand the solution for small 
values of (r and use the matching principle, it  is easily seen that the inner expan- 
sion will be one in powers of Ri. 
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